
Framework design experience from art

Marc Paterno
EIC software workshop
25 September 2015

What is a framework?

•  From Wikipedia:
“… a software framework is an abstraction in which software
providing generic functionality can be selectively changed by
additional user-written code, thus providing application-specific
software”

•  The “generic functionality” provided by art is a command-line-
driven event-processing framework application.
–  command-line-driven: the application is not interactive
–  event-processing: the program processes a sequence of

events, as specified by the user
•  User-written code, in this case, is provided by the

collaborators on experiments using art.
•  Importantly, the framework is part of a larger “ecosystem”.

9/25/15M. Paterno | Framework experience with art2

What are the parts of the “ecosystem”

•  Source code under version control (we use git)
•  A build system: art provides one, but does not require its use
•  Release, dependency, and environment control

–  strict control over library versions: binary compatibility is guaranteed
–  art relies upon a system called UPS, mostly behind the scenes
–  environment variables used to control PATH, dynamic loading of

libraries
•  Umbrella packages to guarantee binary compatibility
•  art: the framework itself
•  Supporting products (configuration, message logging, etc.)
•  Multiple package distribution options:

–  a web-based package distribution system (scisoft.fnal.gov)
–  Use of CVMFS, especially for grid use

•  Available connection to data handling (decoupling is important)
•  Curated tools that work together: ROOT, Geant4, python, numpy,

Boost, etc. Binary compatibility guaranteed if you use our builds.

9/25/15M. Paterno | Framework experience with art3

What a framework gives you

4

Allows you to write your physics code without worrying about the infrastructure.
Makes it easy to work with others.
But not for free – you have to learn it!

Some people find such a system constraining:
 Infrastructure is hidden behind the scenes from you
 Your ideas may not be included
 You have to trust a system you didn’t write
 You miss out on the fun of writing super-cool complicated C++ code

Some people find such a system liberating:
 You can concentrate on physics code
 Your C++ is pretty easy (you are using a complicated system, not writing it)
 You get to miss out having to maintain the complicated C++ code (yay!)
 You can use code from others and share yours with others
 You can get services for free (e.g. data handling)

In g2migtrace/src/primaryConstruction.cc

5

// constructionMaterials is essentially a "materials library" class.
// Passing to to construction functions allows access to all materials

 /**** BEGIN CONSTRUCTION PROCESS ****/

 // Construct the world volume
 labPTR = lab -> ConstructLab();
 // Construct the "holders" of the actual physical objects
#ifdef TESTBEAM
 ArcH.push_back(labPTR);
#else
 ArcH = arc->ConstructArcs(labPTR);
#endif
 // Build the calorimeters
 // cal -> ConstructCalorimeters(ArcH);
 station->ConstructStations(ArcH);
#ifndef TESTBEAM
 // Build the physical vacuum chambers and the vacuum itself
 VacH = vC -> ConstructVacChamber(ArcH);

What if we have a  
different test beam?

What if I want a
different detector
configuration?

this kind of code is
hard to excise later

I don’t think we can’t simultaneously maintain this code and our sanity

What are some of the event-processing tasks?

1.  Simulation of detector response to events
2.  Reconstruction of real or simulated events
3.  Calibration studies
4.  Analysis: making plots (or at least histograms and such)!

•  All of these tasks can be performed in the same framework.
•  All the modules you may write can be re-used in any relevant

event-processing context.

9/25/15M. Paterno | Framework experience with art6

The genesis of art

•  art is a fork of the CMSSW framework, the framework used by the
CMS experiment at the LHC.
–  Many in the initial art team were also designers of CMSSW
–  The fork was done in 2009; then only considered by Mu2e
–  Simplified and made suitable for multiple experiments in 2010

•  We replaced
–  the build system
–  the packaging system that allowed easy use of external products
–  plugin management, to simplify user-defined data product generation
–  the configuration language (replaced Python with JSON-ish FHiCL)

•  We added the ability to ship a release to be used by experiments
as an “external product”

9/25/15M. Paterno | Framework experience with art7

What does the framework program do for you?

•  Mostly the framework exists to handle the tasks in event
processing that you don’t care much about, but which have to
work
–  reading input, writing output
–  loading and configuring the plugin modules you want to run
–  keeping track of how outputs were generated (“provenance

tracking”); critical for reproducibility
–  organizing histogram output
–  Services to manage access to “global resources”: geometry

information, calibrations, …
–  systematizing the handling of error conditions (exception

classes and a pattern for their use)
–  timing modules, measuring memory use, tracking execution, …

•  The framework does not know about physics

9/25/15M. Paterno | Framework experience with art8

A high-level view of a configured art program

output 1

plots 1

alg 1 alg 2 alg 3

path A

alg 4 alg 5

path B

plots 2

output 2

endpath

art file 1

art file 2
art input

file

source

histogram
file

9/25/15M. Paterno | Framework experience with art9

Choosing algorithms to run

•  Algorithms (simulation, reconstruction, or just analysis code)
is built into classes, put into dynamic libraries called modules.

•  Text files (in a language called FHiCL) declare
–  what modules will be loaded, and in what order they are to run
–  what files will be read and written

9/25/15M. Paterno | Framework experience with art10

output 1

plots 1

alg 1 alg 2 alg 3

path A

alg 4 alg 5

path B

plots 2

output 2

endpath

art file 1

art file 2
art input

file

source

histogram
file

Accessing data

•  Modules never
communicate with
(call) other modules.

•  Modules can call
services (e.g., to
create histograms
managed by ROOT).

•  Mostly, modules
interact with an Event.

•  An Event is just an
organized collection of
data products, with
information about them
(metadata).

9/25/15M. Paterno | Framework experience with art11

alg1 plots1

product 1

product 3

product 2

product 5

alg 3
output 1

Event

service
1

Data: events, subruns, runs, data products

•  An Event is the “atomic unit” for data processing, and is like a in-
memory database of user-defined data products
–  modules are passed a whole event, pick out the parts they want
–  producers and filters can put new data products into an event
–  art provides facilities for creating data product classes, but doesn’t

actually contain any such classes. Your experiments define them.
•  A SubRun is:

–  a sequence of events, collected or simulated under some consistent
running conditions

–  an event-like container for subrun products
•  A Run is like a subrun, only bigger.
•  The rules for defining subruns and runs belong to your experiment,

and are not part of art.
•  Events labeled with an EventID, which contains a triplet of run

number, subrun number, and event number.

9/25/15M. Paterno | Framework experience with art12

Phases of processing: callbacks and the module API

•  Modules are classes, so have constructors and destructors.
–  do as much initialization as possible in the constructor

•  Modules have member functions to handle the event loop
–  begin/end job: initialization not possible in the constructor can

be done here; should be undone at end job. Called before files
are open.

–  begin/end run: called when a new run is encountered in a file
(some subtleties ignored for now)

–  begin/end subrun: similar to above, but for subruns
–  event: this is the main processing function for most modules

•  Some module types can read from and write to the event;
some can only read from the event.

9/25/15M. Paterno | Framework experience with art13

Begin
Job

Begin
Run EventEnd

SubRunEvent End
Run

End
Job

Begin
SubRun

End
SubRunEvent Begin

SubRun

5 different module types

•  Sources are the things that provide the sequence of runs /
subruns / events to be processed. art provides a few widely-
used sources and tools to write your own.

•  Producers and filters create new data products; filters also
return a status that can terminate a path.

•  Analyzers can’t create new products, but can write other
output (e.g. histogram files, ntuples).

•  Output modules write output files.
•  Exactly one source, and any number of the others types of

module, can be used in the same program.
•  Multiple instances of the same type of module are allowed

9/25/15M. Paterno | Framework experience with art14

The difference between a module type and instance

•  A module type is also a C++ type, that is, a class.
•  One can have multiple instances of the same data type, with

distinct identity and state: 

 std::string greeting { “hello” };  
 std::string farewell { “goodbye” };  

•  Similarly, a framework program can have multiple instances
of the same module type:
–  Several instances of the same tracking algorithm, each with

different values of some configurable parameters.
–  Several instances of RootOutput, each writing its own output

art-ROOT data file.

9/25/15M. Paterno | Framework experience with art15

Services

•  Services provide access to program-wide information or
facilities.

•  Service can be access (almost) anywhere, at (almost) any
time
–  can be used in module constructors

•  art provides some services
–  examples include timing of modules, controlled creation of

ROOT histograms
•  Experiments also write services

–  Some are provided by LArSoft to many experiments
–  Some are completely experiment-specific
–  examples include access to geometry information, and

calibration information

9/25/15M. Paterno | Framework experience with art16

Maintenance and support tools & efforts

•  Meetings
–  art stakeholders: weekly meeting with representatives of experiments
–  triage meetings: weekly team meeting to schedule work

•  Mailing lists
–  art-users@fnal.gov (open to all)
–  artists@fnal.gov (sends mail to the core developers)
–  each experiment will have one or more lists

•  Issues (feature requests, bug reports) handled at Redmine site
–  anyone can report a suspected bug
–  we ask for help in getting the report into the right tracker

•  experiment code bugs in experiment’s bug tracker
•  infrastructure bugs in art issue tracker

–  we ask people to discuss feature requests within their experiment, or on
the art-users list, before submitting a feature request

•  Project management done using the Redmine site
–  prioritize work based on experiment needs
–  the tool isn’t great, but it is usable (and it is what we have)

9/25/15M. Paterno | Framework experience with art17

Integration into workflows

•  The FHiCL configuration language is designed to make it
easy to provide automated modifications without parsing
–  e.g. appending a new line to change any configuration

parameter
•  Runtime environment and delivery system is designed to

allow integration of workflow system tools
–  e.g. data-set handling (SAM) introduced by a 3rd-party UPS

product which depends on art and SAM; art does not depend
upon it.

•  Delivery of software to grid sites made easy with CVMFS.
–  UPS product trees can be made available anywhere

9/25/15M. Paterno | Framework experience with art18

Original design features (mostly) not now in art

•  Path specification design provided consistency checking at
program start-up.

•  Modules declared what data they read, as well as what they
created; enables verification of correctness, and computing of
an efficient processing graph.

•  Multithreaded design
–  does not improve throughput, but decreases memory use
–  this has now been added to CMSSW, using a task-based model
–  not yet in art; need is less.

•  Use of an internal database (SQLite) to store metadata
–  we have recently added this, but don’t use it to its full potential

yet

9/25/15M. Paterno | Framework experience with art19

What would I do differently today?

•  Plan for concurrency from day 1.
–  We should not have allowed ourselves to be argued out of this.

•  Plan for use of HPC-style resources
–  varied architectures
–  many cores, each with limited memory; think of MIC
–  rely on fast networking, avoid use of files as much as possible (we do

this with the artdaq DAQ toolkit): distributed programming
•  Plan for polyglot programming

–  allow use of other languages where possible; e.g. we are soon to
deploy support for writing analysis modules in Python.

•  Enforce HPC-ready data format
–  structure-of-arrays, rather than array-of-structures
–  simple data, with sophistication added by “wrappers”, classes that

provide functions to go with the simple data of the data product
•  Keep I/O technology choices open.
•  Make everything open-source from day 1.

9/25/15M. Paterno | Framework experience with art20

Things to think about very hard

•  Can you share effort with someone else?
–  The neutrino and muon program experiments at FNAL have saved a

great deal of effort by not inventing multiple frameworks. CDF and D0
(Tevatron) did not do this; CMS and ATLAS (LHC) did not do this.

•  How will you teach your users?
–  Most will not be software experts.
–  Many will not care about software quality: they have a job to do today,

and no time to worry about the future. Framework supporters have to
worry about the future!

–  People who care little about quality can produces reams of code
quickly, and so most examples of use might be bad examples.

–  Tutorial documentation, and task-based documentation, is very hard to
produce – and is of great value.

•  How will you get feedback from your users?

9/25/15M. Paterno | Framework experience with art21

A few final observations concerning language

•  What language should you use?
–  I think you should choose C++, but you should choose it by

intention, not by accident. Know why you do not choose some
other.

•  Keep up with the language standard.
–  Experimenters are naturally resistant to change
–  But languages evolve for good reason
–  e.g. C++ move semantics, shared_ptr and unique_ptr, variadic

templates.
–  e.g. using template metaprogramming to help avoid user errors,

and to make library use simpler (we couldn’t survive without
SFINAE)

9/25/15M. Paterno | Framework experience with art22

Summary

•  Software design is mostly a “people thing”
–  coding is not so hard
–  deciding what you want the code to do is much harder
–  you can err both by too much planning (“analysis paralysis”) and

by too little planning (this is very common in HEP).
•  Design failures are usually analysis failures: not enough

thought given to all the necessary cases.
•  Flexibility is key:

–  you probably can’t “design one to throw away”
–  you probably can start with the most important features, in a

design where extensibility is planned for.

9/25/15M. Paterno | Framework experience with art23

9/25/15M. Paterno | Framework experience with art24

Extra	 slides	

What does a framework do?

25

Your physics
code

More physics
code

Your friend’s
code

Dynamic library loading I/O handling Event Loop & paths

Run/Subrun/
Event stores

Messaging Configuration

Provenance
generation Metadata

Code you write Code you use from the
framework

•  User code is what
experimenters provide.

•  Services provide
access to global
facilities.

•  Data model provides
the representation of
event data.

•  Event processor is the
“event loop”, the core of
the framework.

•  Configuration and
logger systems can be
used by everything.

User Code

LoggerConfig

ServicesModule
InterfaceData Model

Event ProcessorInput Output

What are the parts of the art framework?

9/25/15M. Paterno | Framework experience with art26

•  Data products are read from
input file.

•  New data products are
created by algorithms.

•  Plots are created and written
out.

•  Data products are written to
several output files.

•  We want to be able to
improve any algorithm
without breaking others. We
want loose coupling.

What might a program look like without a framework?

// pseudocode! not real C++.
// Part of the body of main
read(infile, &prod1, &prod2);
alg_1(prod1, &prod3);
alg_2(prod2, &prod4);
alg_3(prod3, &prod5);
plots1(prod2, plotfile);
plots2(prod3, prod4,
 plotfile);
write(outfile1,
 prod3, prod5);
write(outfile2,
 prod2, prod4);

9/25/15M. Paterno | Framework experience with art27

Loose coupling vs. tight coupling

•  Algorithms that are interwoven are hard to modify
–  changes in one part of the code often break code elsewhere
–  programs that are hard to modify are hard to improve and hard to

extend with your own ideas
–  interwoven = tight coupling

•  Loose coupling increases flexibility
–  replace algorithms you don’t like with ones you do
–  extend data structures without breaking old code
–  don’t need to “rebuild the world” because of local modifications

•  Loose coupling can be applied at every level
–  between classes
–  between libraries
–  between sets of libraries (packages)
–  this has influenced the design of art at every level.

9/25/15M. Paterno | Framework experience with art28

Where does your code go?

•  Of course, all code goes into a source code repository!
•  You only need to have the source code you are modifying

–  You are not modifying art itself
–  You may be modifying experiment code, or LArSoft code

•  Your experiment many have many packages.
•  The organization of your experiment’s code determines how

much (or how little) code you need to have access to.
•  To make builds fast, it is best to check out only what you have

to, and to use pre-built libraries as much as you can.
–  art, ROOT, Geant4, boost, … many large libraries are provided

pre-built for you.
–  If you are using LArSoft (as opposed to modifying it), you can

use the pre-built libraries.

9/25/15M. Paterno | Framework experience with art29

Getting input

•  Sources are the things that tell the framework what runs,
subruns, and events are to be processed.

•  Some sources read data files (e.g. RootInput, which reads
the art-ROOT data file format, as written by RootOutput).

•  One source (EmptyEvent) creates events containing no
products; it is widely used in simulations.

•  Experiment often have specialized inputs:
–  to read file formats (e.g. written by your DAQ system); these will

have specialized sources created to read them;
–  to read from a live DAQ system
–  to do specialized manipulations of data from the file, before it is

given to the framework

9/25/15M. Paterno | Framework experience with art30

Making plots (and other analysis tasks)

•  Not all algorithms have to do with
simulation or reconstruction tasks.

•  Not all algorithms create new data
products for other algorithms.

•  Some algorithms accumulate
statistics about event data
–  calculate statistical summaries for

printing
–  mostly, create and fill histograms (or

other types of plots)
•  The framework provides a module

variety called an analyzer for such
tasks.

9/25/15M. Paterno | Framework experience with art31

plots1

product 1

product 3

product 2

product 5

Event

service
1

